Optimal transport for Seismic Imaging

Bjorn Engquist

In collaboration with Brittany Froese and Yunan Yang

ICERM Workshop - Recent Advances in Seismic Modeling and Inversion: From Analysis to Applications, Brown University, November 6-10, 2017

Outline

- 1. Remarks on Full Waveform Inversion (FWI)
- 2. Measures of mismatch
- 3. Optimal transport and Wasserstein metric
- 4. Monge-Ampère equation and its numerical approximation
- 5. Applications to full waveform inversion
- 6. Conclusions

"Background: matching problem and technique"

1. Remarks on Full Waveform Inversion (FWI)

• Full Waveform Inversion is an increasingly important technique in the inverse seismic imaging process

- It is a PDE constrained optimization formulation
- Model parameters v are determined to fit data

$$\min_{m(x)} \left(\left\| u_{comp}(m) - u_{data} \right\|_{A} + \lambda \left\| Lv \right\|_{B} \right)$$

FWI: PDE constrained optimization

• FWI: Measured and processed data is compared to a computed wave field based on model parameters *v* to be determined (for example, *P*-wave velocity)

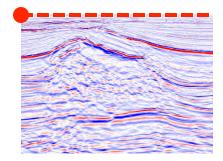
$$\min_{m(x)} \left(\left\| u_{comp}(m) - u_{data} \right\|_{A} + \lambda \left\| Lv \right\|_{B} \right)$$

• || . ||_A measure of mismatch

 $-L_2$ the standard choice

- $|| Lc ||_B$ potential regularization term, which we will omit for this presentation
- at the surface

Over determined boundary conditions at the surface

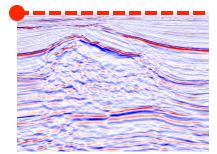


Mathematical and computational challenges

- Important computational steps
- Relevant measure of mismatch (✔)
- Fast wave field solver
 - In our case scalar wave equation in time or frequency domain, for example

$$u_{tt} = m(x)^2 \Delta u_t$$

- Efficient optimization
 - Adjoint state method for gradient computation



2. Measures of mismatch

- We will denote the computed wave field by f(x,t;v) and the data by g(x,t), $u_{comp}(x,t;m) = f(x,t;m), \ u_{data}(x,t) = g(x,t)$
- The common and original measure of mismatch between the computed signal *f* and the measured data *g* is *L*₂, [Tarantola, 1984, 1986]

$$\min_{m}\left\|f_{m}-g\right\|_{L_{2}}$$

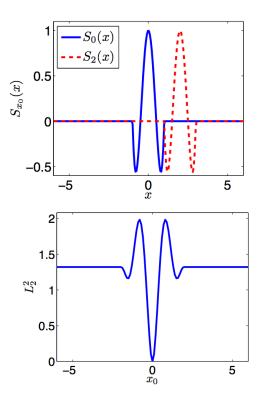
• We will make some remarks on different Measures of mismatch starting with local estimates to more global

Global minimum

- It can be expected that the mismatch functional will have local minima that complicates minimization algorithms
- Ideally, local minima different from the global min should be avoided for some natural parameterizations as "shift" and "dilations" (f (t) = g(at - s))
- Shift as a function of *t*, dilation as a function of *x*

$$u_{tt} = m^2 u_{xx}, \quad x > 0, t > 0$$

 $u(0,t) = u_0(t) \rightarrow u = u_0(t - x / m)$



Local measures

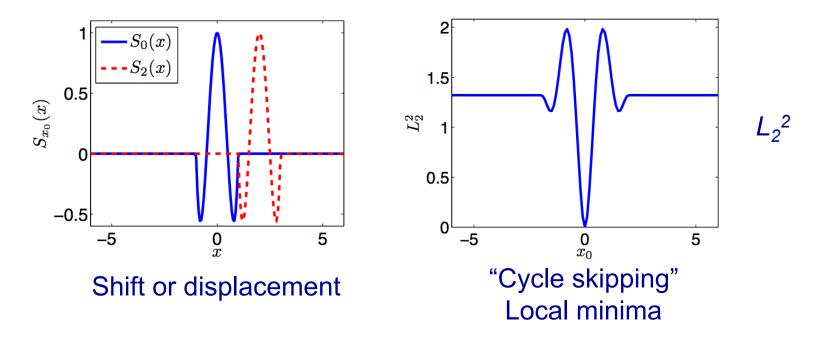
In the L₂ local mismatch, estimators f and g are compared point wise,

$$J(v) = \left\| f - g \right\|_{L_2} = \left(\sum_{i,j} \left| f(x_i, t_j) - g(x_i, t_j) \right|^2 \right)^{1/2}$$

• This works well if the starting values for the model parameters are good otherwise there is risk for trapping in local minima "cycle skipping"

"Cycle skipping"

- The need for better mismatch functionals can be seen from a simple shift example small basin of attraction
- For other examples, [Vireux et al 2009]



Global measures

- Different measures have been introduced to to compare all of f and g – not just point wise.
- Integrated functions
 - NIM [Liu et al 2014]
 - [Donno et al 2014]
- Stationary marching filters
 - Example AWI, [Warner et al 2014]
- Non-stationary marching filters
 - Example [Fomel et al 2013]
- Measures based on optimal transport (

Integrated functions

• f and g are integrated, typically in 1D-time, before L_2 comparison

$$J = \left\| F - G \right\|_{L_2} = \left(\sum_{i,j} \left| F(x_i, t_j) - G(x_i, t_j) \right|^2 \right)^{1/2},$$

$$F_{i,j} = \sum_{k=1}^{j} f(x_i, t_k), \quad G_{i,j} = \sum_{k=1}^{j} g(x_i, t_k),$$

- In mathematical notation this is the *H*⁻¹ semi-norm
- Slight increase in wave length for short signals (Ricker wavelet)
- Often applied to modified signals like squaring scaling or envelope to have *f* and *g* positive and with equal integral

Matching filters

- The filter based measures typically has two steps
 - Computing filter coefficients K

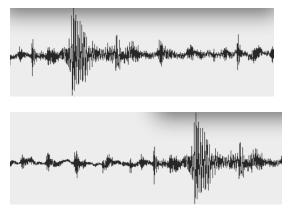
$$K = \operatorname{argmin} \left\| K * f - g \right\|_{L_2}$$

- Estimation of difference between computed filter and the identity map. ||K I||
- The filter can be stationary or non-stationary
- The optimal transport based techniques Does this in one step
 - Minimization is of a measure of transform K or as it is called transport

3. Optimal transport and Wasserstein metric

- Wasserstein metric measures the "cost" for optimally transport one measure (signal) f to the other: g – Monge-Kantorivich optimal transport measure
 - "earth movers distance" in computer science

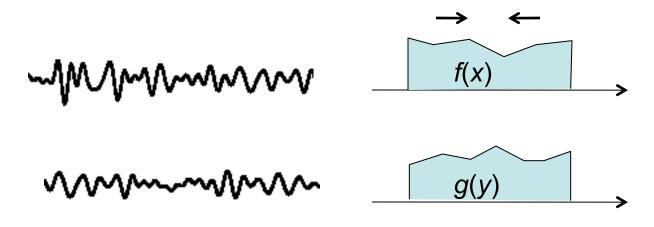
$$f(x) \longrightarrow g(y)$$



Compare travel time distance Classic in seismology

Optimal transport and Wasserstein metric

- The Wasserstein metric is directly based on one cost function
- Signals in exploration seismology are not as clean as above and a robust functional combining features of L₂ and travel time is desirable
- Extensive mathematical foundation



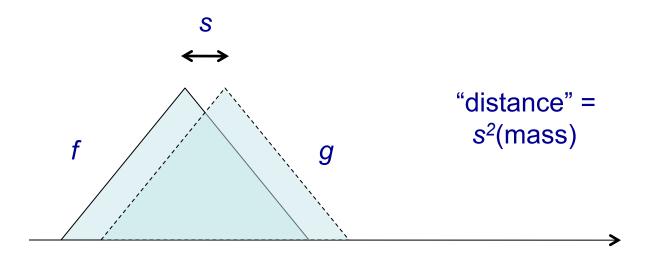
$$W_{p}(f,g) = \left(\inf_{\gamma} \int_{X \times Y} d(x,y)^{p} d\gamma(x,y)\right)^{1/p}$$

$$\gamma \in \Gamma \subset X \times Y, \text{ the set of product measure : } f \text{ and } g$$

$$\int_{X} f(x) dx = \int_{Y} g(y) dy, \quad f, g \ge 0$$

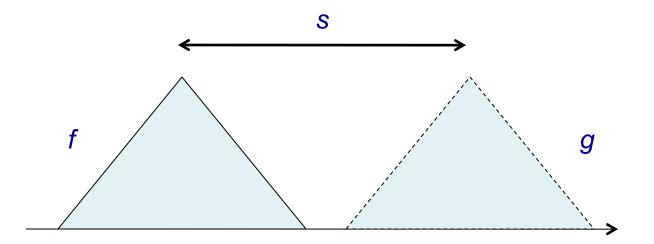
$$W_{2}(f,g) = \left(\inf_{T_{f,g}} \int_{X} \left\|x - T_{f,g}(x)\right\|_{2}^{2} f(x) dx\right)^{1/2}$$

- Here the "plan" T is the optimal transport map from positive Borel measures f to g of equal mass
- Well developed mathematical theory, [Villani, 2003, 2009]

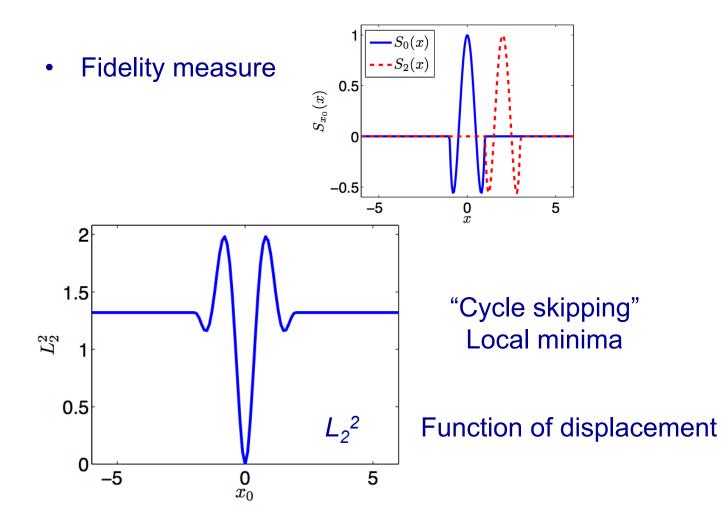


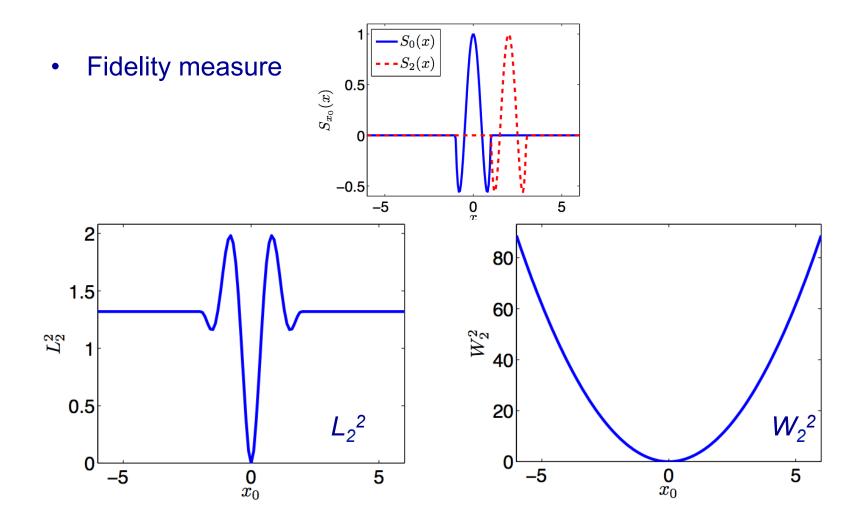


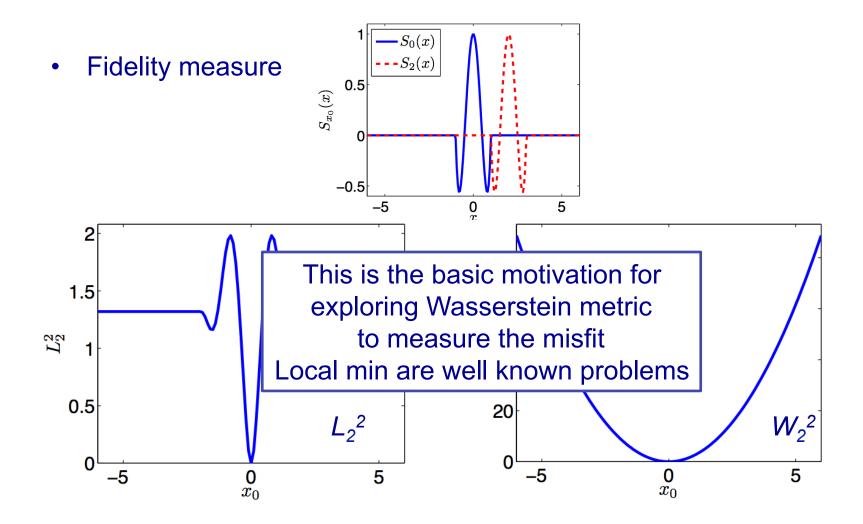
 In this model example W₂ and L₂ is equal (modulo a constant) to leading order when separation distance s is small. Recall L₂ is the standard measure

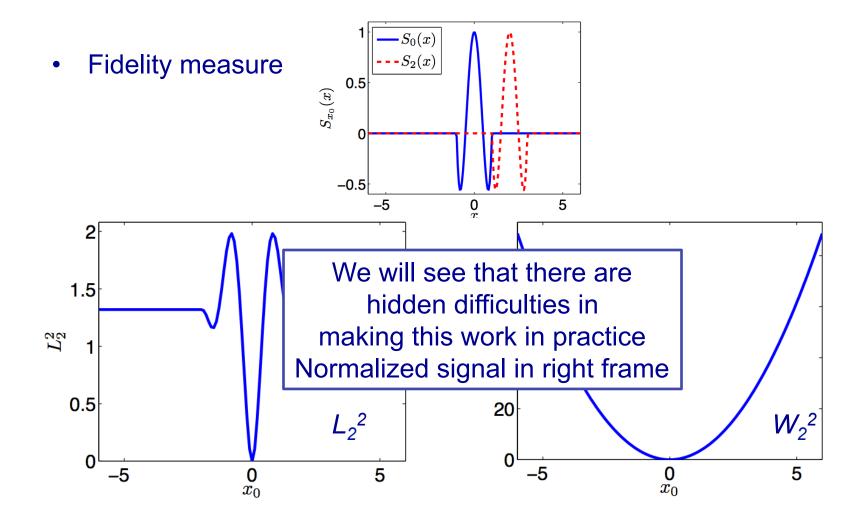


- When s is large W₂ = s = travel distance (time), ("higher frequency"), L₂ independent of s
- Potential for avoiding cycle skipping









Analysis

• Theorem 1: W_2^2 is convex with respect to translation, *s* and dilation, *a*,

 $W_2^2(f,g)[\alpha,s], \ f(x) = g(ax-s)\alpha^d, \ a > 0, x, s \in \mathbb{R}^d$

• Theorem 2: W_2^2 is convex with respect to local amplitude change, λ

$$W_{2}^{2}(f,g)[\beta], f(x) = \begin{cases} g(x)\lambda, x \in \Omega_{1} \\ \beta g(x)\lambda, x \in \Omega_{2} \end{cases} \beta \in R, \ \Omega = \Omega_{1} \cup \Omega_{2} \\ \lambda = \int_{\Omega} g \, dx \, / \left(\int_{\Omega_{1}} g \, dx + \beta \int_{\Omega_{2}} g \, dx \right) \end{cases}$$

• (L₂ only satisfies 2nd theorem)

Remarks

- The scalar dilation *ax* can be generalized to *Ax* where *A* is a positive definite matrix. Convexity is then in terms of the eigenvalues
- The proof of theorem 1 is based on c-cyclic monotonicity

$$\left\{ \left(x_{j}, x_{j} \right) \right\} \in \Gamma \twoheadrightarrow \sum_{j} c\left(x_{j}, x_{j} \right) \leq \sum_{j} c\left(x_{j}, x_{\sigma(j)} \right)$$

• The proof of theorem two is based on the inequality

$$W_2^2(sf_1 + (1-s)f_2, g) \le sW_2^2(f_1, g) + (1-s)W_2^2(f_2, g)$$

Illustration: discrete proof (theorem 1)

• Equal point masses then weak limit for generl theorem alternative to using the c-cyclic propery

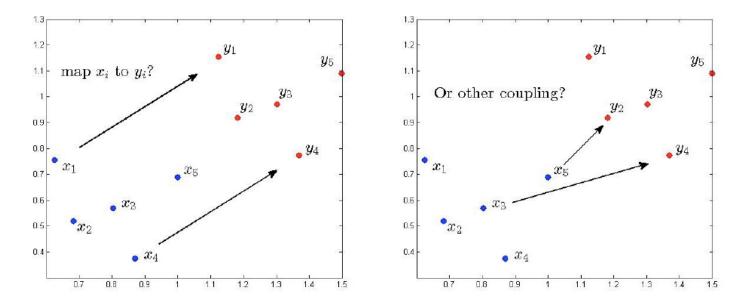


Illustration: discrete proof

$$W_{2}^{2} = \min_{\sigma} \sum_{j=1}^{J} \left| x_{o_{j}} - (x_{j} - s\xi) \right|^{2} = \left(\sigma : \text{ permutation} \right)$$
$$\min_{\sigma} \left(\sum_{j=1}^{J} \left| x_{o_{j}} - x_{j} \right|^{2} - 2s \sum_{j=1}^{J} \left(x_{o_{j}} - x_{j} \right) \cdot \xi + J \left| s\xi \right|^{2} \right) =$$
$$\min_{\sigma} \left(\sum_{j=1}^{J} \left| x_{o_{j}} - x_{j} \right|^{2} + J \left| s\xi \right|^{2} \right), \quad \text{from } \sum_{j=1}^{J} x_{o_{j}} = \sum_{j=1}^{J} x_{j}$$
$$\rightarrow x_{o_{j}} = x_{j} \rightarrow \sigma_{j} = j$$

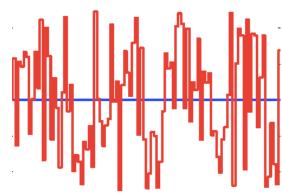
Noise

- W₂² less sensitive to noise than L₂
- Theorem 3: $f = g + \delta$, δ uniformly distributed uncorrelated random noise, (f > 0), discrete i.e. piecewise constant: N intervals

$$\|f - g\|_{L_2}^2 = O(1), \quad W_2^2(f - g) = O(N^{-1})$$

$$f = (f_1, f_2, ..., f_J)$$

 Proof by "domain decomposition" dimension by dimension and standard deviation estimates using closed
 1D formula



Computing the optimal transport

• In 1D, optimal transport is equivalent to sorting with efficient numerical algorithms O(*N*log(*N*)) complexity, *N* data points

$$W_{2}(f,g) = \int \left(F^{-1}(y) - G^{-1}(y)\right) dy$$

$$F(x) = \int^{x} f(\xi) d\xi, \quad g(x) = \int^{x} g(\xi) d\xi$$

 In higher dimensions such combinatorial methods as the Hungarian algorithm are very costly O(N³), Alternatives: linear programming, sliced Wasserstein, ADMM

Computing of optimal transport

 For higher dimensions fortunately the optimal transport related to W₂ can be solved via a Monge-Ampère equation [Brenier 1991, 1998]

$$W_{2}(f,g) = \left(\int_{X} \left\|x - \nabla u(x)\right\|_{2}^{2} f(x) dx\right)^{1/2}$$
$$\det\left(D^{2}(u)\right) = f(x) / g(\nabla u(x))$$
$$Brenier map T(x) = \nabla u(x)$$

• Recently there are now alternative PDF formulations

4. Monge-Ampère equation and its numerical approximation

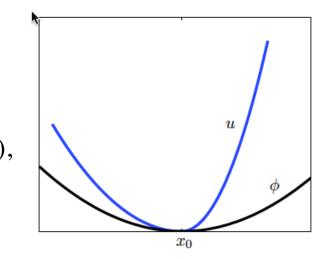
- Nonlinear equation with potential loss of regularity
- Weak viscosity solution *u* if *u* is both a sub and super solution

$$\det(D^2(u)) - f(x) = 0, \ u \ convex, \ f \in C^0(\Omega)$$

• Sub solution (super analogous)

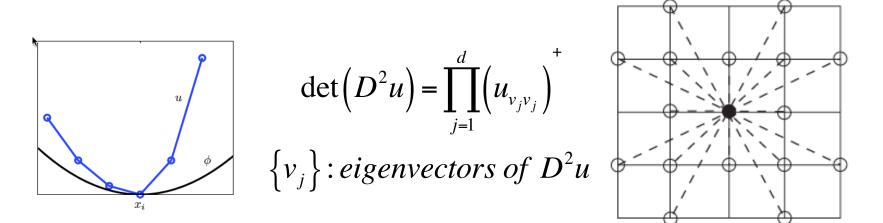
$$x_{0} \in \Omega$$
, if local max of $u - \phi$, then
 $\det(D^{2}\phi) \le f(x_{0})$

$$u_{xx} = f, \ \phi(x_0) = u(x_0), \ \phi(x_0) = u(x_0)$$
$$\phi(x) \le u(x) \rightarrow \phi_{xx} \le f$$



Numerical approximation

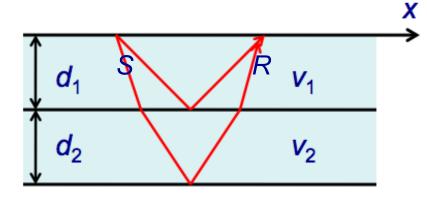
 Consistent, stable and monotone finite difference approximations will converge to Monge-Ampère viscosity solutions [Barles, Souganidis, 1991]



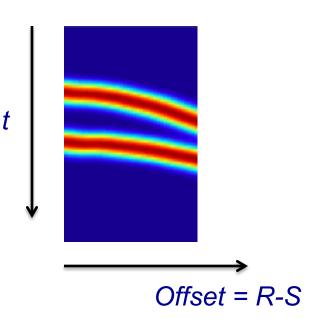
[Benamou, Froese, Oberman, 2014]

5. Applications to full waveform inversion

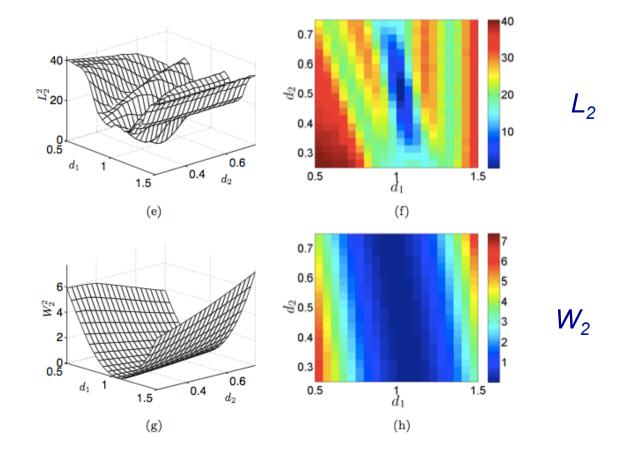
• First example: Problem with reflection from two layers – dependence on parameters, with Froese.



 Robust convergence with direct minimization algorithm (Simplex) geometrical optics and positive *f*, *g*



Reflections and inversion example



Gradient for optimization

- For large scale optimization, gradient of J(f) = W₂²(f,g) with respect to wave velocity is required in a quasi Newton method in the PDE constrained optimization step
- Based on linearization of J and Monge-Ampère equation resulting in linear elliptic PDE (adjoint source)

$$J + \delta J = \int (f + \delta f) \|x - \nabla (u_f + \delta u)\|^2 dx$$

$$f + \delta f = g(\nabla (u_f + \delta u)) \det(D^2 (u_f + \delta u))$$

$$L(v) = g(\nabla u_f) tr((D^2 u_f) \cdot D^2 (v)) + \det(D^2 u_f) g(\nabla u_f) \cdot \nabla v = \delta f$$

W2 Remarks

- + Captures important features of distance in both travel time and L₂, Convexity with respect to natural parameters
- + There exists fast algorithms and technique robust vs. noise
- Constraints that are not natural for seismology

$$\int_{X} f(x) dx = \int_{Y} g(y) dy, \quad f, g \ge 0, \quad g > 0, M - A$$

• Normalize: transform *f*, *g* to be positive and with the same integral

Large scale applications

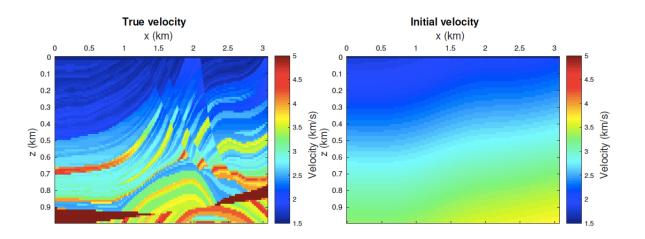
- Early normalizations: squaring, consider positive and negative parts of *f* and *g* separately – not appropriate for adjoint state technique
- Successful normalization linear

$$\tilde{f}(x) = (f(x)+c) / \int (f(x)+c) dx, \quad \tilde{g}(x) = \dots$$

- Efficient alternative to W₂ (2D): trace by trace W₂ (1D) coupled to L₂ [Yang et al 2016]
- Other alternatives, W₁, unbalanced transport [Chizat et al 2015], Dual formulation of optimal transport
- Normalized $W_2 + \lambda L_2$ is an unbalanced transport measure, $\lambda > 0$

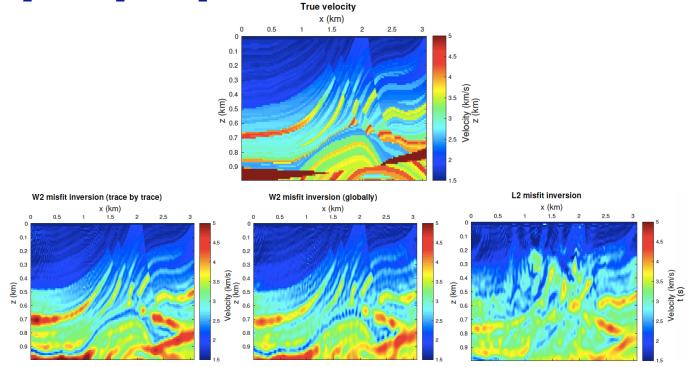
Applications Seismic test cases

- Marmousi model (velocity field)
- Original model and initial velocity field to start optimization



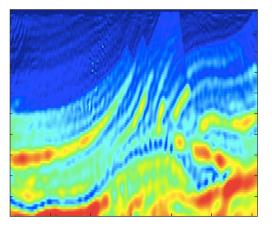
Marmousi model

 Original and FWI reconstruction with different initializations: W₂-1D, W₂-2D, L₂



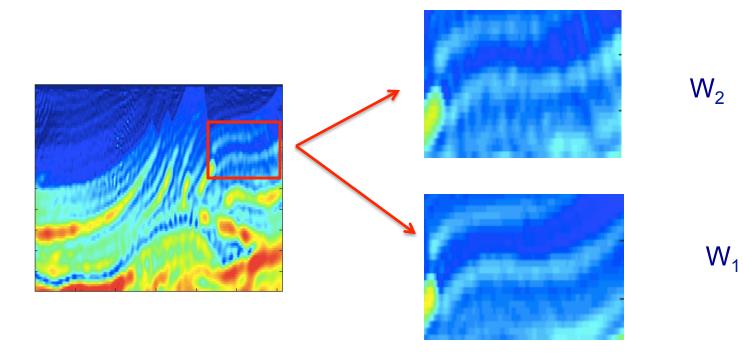
Marmousi model

- Robustness to noise: good for data but allows for oscillations in "optimal" computed velocity, numerical M – A errors
- Remedy: trace by trace, TV regularization



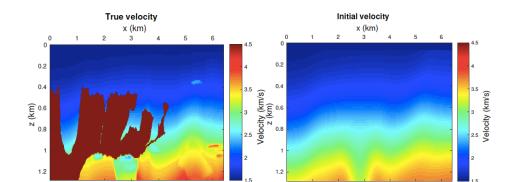
Marmousi model

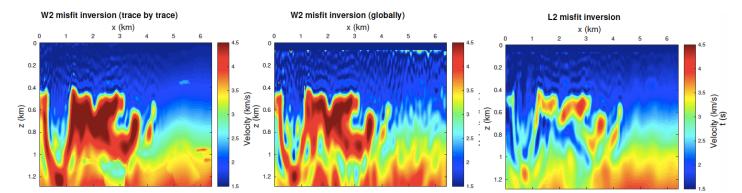
- Robustness to noise: good for data but allows for oscillations in "optimal" computed velocity, numerical M – A errors
- Remedy: trace by trace, TV regularization



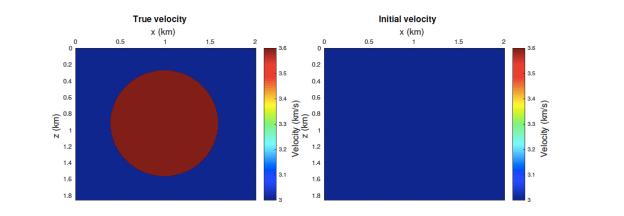
BP 2004 model

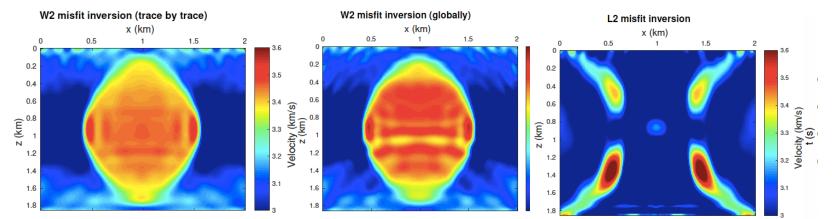
• High contrast salt deposit, W₂ - 1D, W₂ - 2D, L²





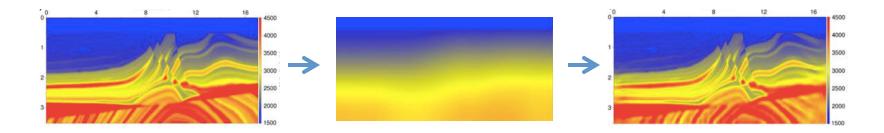
Camembert





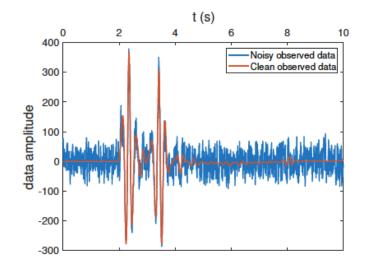
W_1 example

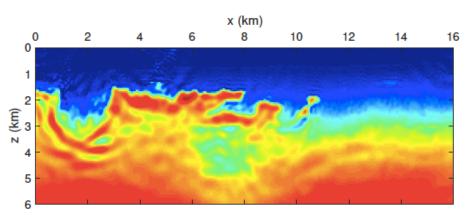
- Example below: W₁ measure and Marmousi p-velocity model [Metivier et. al, 2016]
- Similar quality but more sensitive to noise and $\neq L_2$ when $f \approx g$
- Solver with better 2D performance



W_2 with noise

• Slightly temporally correlated uniformly distributed noise



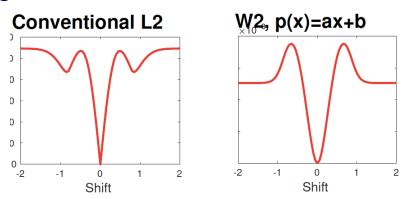


Remarks

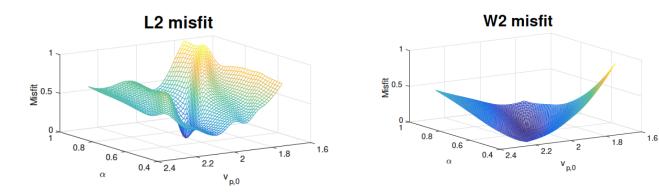
- Troubling issues
 - Theoretical results of convexity based on normalized signals of the form squaring etc. but not practically useful (squaring: not sign sensitive, requires compact support and problem with adjoint state method)
 - The practically working normalization based on linear normalization does not satisfy convexity with respect to shifts

Remarks

• Linear scaling: misfit as function of shift, Ricker wavelet



• Function of velocity parameters: $v = v_p + \alpha z$ [Metivier et. al, 2016]

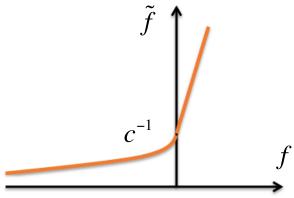


Remarks

• New and currently best normalization

$$\tilde{f}(x) = \hat{f}(x) / \int \hat{f}(x) dx, \quad \hat{f}(x) = \begin{cases} f(x) + c^{-1}, & x \ge 0\\ c^{-1} \exp(cf(x), & x < 0) \end{cases}$$

- Good in practice allows for less accurate initial mode than linear scaling
- Satisfies our theorems for c large enough



6. Conclusions

- Optimal transport and the Wasserstein metric are promising tools in seismic imaging
- Theory and basic algorithms need to be modified to handle realistic seismic data
- Ready for field data, [PGS, SEG2017, North Sea]